
44 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 64, NO. 1, FEBRUARY 2018

A Low-Cost Hardware Design of a 1-D SPIHT
Algorithm for Video Display Systems

Xuan Truong Nguyen, Hyuk-Jae Lee, Member, IEEE, and Hyun Kim, Member, IEEE

Abstract—This paper presents low-cost compressors for video
display systems, which compress video data to reduce the
size of the frame memory in a display panel in a television
or a smartphone. The hardware solution exploits the discrete
wavelet transform (DWT) and 1-D set partitioning in hier-
archical trees (SPIHT) to support the raster-scan processing
order in a display system and meet the fixed target com-
pression ratio (CR). However, the compression efficiency and
hardware cost often increase in proportion to the block size and
thus, designing a compressor with low cost but high fidelity is
challenging. This paper proposes a generic partitioned SPIHT
algorithm, which achieves a low-cost design for mobile devices
by allowing various sizes of partitioned sub-blocks. By taking
advantage of DWT decomposition properties, the proposed algo-
rithm partitions a coding block into sub-blocks, each of which
can be processed independently. The independent coding opera-
tions among multiple sub-blocks allow the size of the hardware
buffer to be decreased, by storing the temporary results only
for an individual sub-block. However, the proposed sub-block
coding slightly decreases the compression efficiency when each
sub-block is compressed with the same target CR. To reduce the
drop-off in the compression efficiency, the boundary-pixel han-
dling in DWT is exploited and the proposed partitioned SPIHT
method adjusts the target CR for each sub-block depending on
the potential quality loss. When compared with the previous
1-D design, experimental results show that the hardware gate
count and internal memory are reduced by 59.34% and 75%,
respectively. Furthermore, the proposed boundary handling and
bit-allocation schemes mitigate the PSNR degradation due to the
sub-block coding by 1.11 dB.

Index Terms—1-D compression, discrete wavelet trans-
form (DWT), frame memory compression, low-cost hardware
design, set partitioning in hierarchical trees (SPIHT), video
display systems.

I. INTRODUCTION

IN RECENT years, video display systems, such as in
smart and high-resolution televisions or mobile devices,

have become increasingly popular. A display system usually

Manuscript received December 30, 2017; revised February 10, 2018;
accepted February 15, 2018. Date of publication March 7, 2018; date of
current version March 29, 2018. This work was supported in part by the
Institute for Information and Communications Technology Promotion through
the Korea Government (MSIT, Development of Intelligent Semiconductor
Technology for Vision Recognition Signal Processing for Vehicle Based on
Multi-Sensor Fusion) under Grant 2017-0-00721-001, and in part by the
Research and Development Program of MOTIE/KEIT(Developing Processor-
Memory-Storage Integrated Architecture for Low Power, High Performance
Big Data Servers) under Grant 10077609. (Corresponding author: Hyun Kim.)

The authors are with the Inter-University Semiconductor Research
Center, Department of Electrical and Computer Engineering, Seoul National
University, Seoul 08826, South Korea (e-mail: truongnx@capp.snu.ac.kr;
hyuk_jae_lee@capp.snu.ac.kr; snusbkh0@capp.snu.ac.kr).

Digital Object Identifier 10.1109/TCE.2018.2812059

Fig. 1. LCD overdrive with a frame memory compression in display systems.

stores video data for display in an off-chip memory space
(e.g., DRAM) [1]. When the display system supports a high-
resolution, a huge bandwidth is required for this external mem-
ory access, as well as a large memory storage space [1], [2].
For instance, 4K UHD (3840 × 2160) televisions with three
color components with a bit width of eight per a pixel require
a frame memory of 25MB. In order to reduce the memory
cost and bandwidth, display panel designers often attempt to
reduce the amount of data stored in frame memory by com-
pressing frame data [3]–[6]. An integration of a frame memory
compression in video display systems is presented in Fig. 1.
Frame compression algorithms for display systems have dif-
ferent requirements from the standard video compression, such
as H.264 [7], [8]. First, they require a relatively small fixed
target compression ratio (CR), ranging between three and six,
as the memory size in a video display system is fixed. Second,
they require a low hardware complexity, as the hardware cost
overhead should not weaken the advantages of reducing mem-
ory storage and bandwidth. Finally, it is necessary to process
frame data in a raster-scan order.

Several frame memory compression algorithms have been
proposed for video display systems. In general, these are
categorized into lossy and lossless compression methods [9].
Lossless compression approaches such as JPEG-LS [3] are
simple and obviously achieve a high image/video quality.
However, they mostly adopt variable length coding (VLC),
and consequently, cannot meet a fixed target CR, as required
in video display systems. To fit in a limited memory size,
lossy compression approaches [3]–[6] have been proposed by
exploiting an adaptive quantization threshold. In general, how-
ever, the threshold is unknown before encoding. Therefore, it
is iteratively adjusted until its corresponding bit-stream meets
a target bit length (TBL). Clearly, these iterative methods
are not efficient for hardware implementation. Set partition-
ing in hierarchical trees (SPIHT) is a fast and high-fidelity
compression algorithm for wavelet-transformed images [10].
It processes discrete wavelet transform (DWT) coefficients bit-
plane by bit-plane in a descending order, from upper bit-planes

1558-4127 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

NGUYEN et al.: LOW-COST HARDWARE DESIGN OF 1-D SPIHT ALGORITHM FOR VIDEO DISPLAY SYSTEMS 45

to lower ones, and codes the more significant bits first. While
achieving a high compression efficiency, it is easily termi-
nated as the coded bit-stream reaches the TBL. In other words,
SPIHT efficiently generates the coded bit-stream targeted for
a fixed memory space. The conventional SPIHT [10] and its
variations [11]–[15] target 2-D images, to take advantage of
spatial data correlations in both horizontal and vertical direc-
tions. Hence, they assume that an image is partitioned into 2-D
blocks or tiles. However, this assumption is not true in video
display systems that display frames in the raster-scan order,
because 2-D SPIHT-based approaches require a huge memory
buffer to store additional lines and form 2-D blocks. For exam-
ple, to compress a 16×16 block in a 4K UHD image requires
storing 16 lines, or a buffer of 16 × 3840 pixels. Therefore, it
is not efficient to employ these 2-D SPIHTs for video display
systems.

The 1-D SPIHT algorithm, a modification of the con-
ventional 2-D SPIHT, has been proposed for 1-D data, in
order to reduce the large memory requirement described
above. Originally, this method and its variations have been
applied for wavelet electrocardiogram data [16], [17], as the
input signal is naturally 1-D. Zhang and Zhang [18] inves-
tigated an unsymmetrical 1-D SPIHT algorithm for image
processing. However, their work mainly focused on the algo-
rithm, while a hardware implementation was not investigated.
Kim et al. [19], [20] focused on the hardware implementa-
tions of 1-D SPIHT for video display systems. To improve
the coding efficiency, they selected a relatively large block,
with a size of 1 × 64. However, this large block size requires
a lot of hardware resources (i.e., gate count and buffer) and is
still a burden to be used as an embedded compression module
in mobile devices.

To address this problem, this paper proposes a partitioned
SPIHT method, which efficiently achieves a low-cost design.
The proposed algorithm creates partitioned sub-blocks in cod-
ing operations, which are independent of each other. Therefore,
the proposed algorithm compresses all bit-planes in a sub-
block before it moves to the next sub-block, so that not all
intermediate results for a sub-block are necessary to store
after the sub-block coding is completed. In this manner, the
buffer space for the intermediate results is shared by multiple
sub-blocks, and consequently the total buffer size is signifi-
cantly reduced. It should be noted that the proposed partitioned
algorithm still maintains the raster-scan processing order of
an input image and thus, it is suitable for low-cost designs
because it does not require an input buffer.

Using small coding units can effectively reduce the buffer
size and shorten the latency. However, encoding small coding
units separately leads to local optimizations, and the coding
efficiency may be degraded [11]. To address this problem, the
method presented here utilizes two simple but efficient tech-
niques. First, the proposed method utilizes the conventional
1-D DWT as in [19] and [20] instead of reducing the DWT
block size into the sub-block size. Consequently, it efficiently
performs the boundary handling with the boundary pixels of
sub-blocks, which significantly improves the coding efficiency
owing to sub-block coding. Second, this paper proposes a sim-
ple bit-allocation method, which effectively distributes the

given TBL into four independent sub-blocks, and improves the
coding efficiency. To this end, the proposed hardware imple-
mentation only requires 22.4K gates for an encoder and 25.9K
gates for a decoder, which represents a reduction of 59.34%
compared with the hardware design in [20]. Simulations with
test images show that the two proposed schemes for coding
efficiency enhancement mitigate the PSNR degradation due to
the sub-block coding by 1.11 dB.

The remainder of this paper is organized as follows.
Section II briefly introduces the DWT and SPIHT based
compression algorithm, and Section III describes the pro-
posed block-based SPIHT algorithm. Section IV presents
an improvement of the block-based algorithm, by adjust-
ing the TBL of each block according to its complexity. In
Section V, the proposed algorithm is evaluated by presenting
simulation results, and its complexity is estimated with a hard-
ware implementation. Section VI presents the conclusions for
this paper.

II. CONVENTIONAL 1-D DWT AND SPIHT ALGORITHMS

This section briefly reviews 5/3 integer filtering 1-D
DWT [21], [22] for the wavelet transform, and the direct
modification of SPIHT for 1-D data [12] adopted in this paper.

A. Discrete Wavelet Transform

For an efficient hardware implementation of DWT, this
paper adopts lifting-based filtering [20], which consists of
a sequence of simple filtering operations. The lifting scheme
consists of three stages: 1) splitting; 2) predicting; and
3) updating. In the first stage, the input sequence is divided
into two subsets: 1) an even-indexed sequence and 2) an
odd-indexed sequence. The even sequence is used to pre-
dict the odd one in the second stage. The difference between
the odd sequence and the prediction value is calculated as
the high coefficient. In the third stage, the even sequence is
updated with the high-pass coefficient to compute the low-pass
coefficient. In particular, the high-pass and low-pass coeffi-
cients [Hj(i) and Lj(i) at the jth level] are calculated from the
low-pass coefficients at the previous level as follows:

Hj(i) = Lj−1(2i + 1) −
⌊

Lj−1(2i) + Lj−1(2i + 2)

2

⌋
(1)

Lj(i) = Lj−1(2i) +
⌊

Hj(i) + Hj(i − 1) + 2

4

⌋
(2)

where i is the index of a coefficient for 0 ≤ i ≤ [(N/2j) − 1]
and �a� indicates the largest integer not exceeding a.

When the processing unit of DWT is large, the output result
is repeated with a given period, in the sense that the level
and the index of the generated coefficient is same for each
period. For example, the implementation of the three-level
DWT with 32 input samples is illustrated in Table I. The
first column shows the execution time, and the second col-
umn shows the input data, which is received at a rate of one
data point per one cycle. The third column shows the generated
output sequence forming a 32-pixel coding, which is similar to
that in [19] and [20]. The index in the parenthesis represents
the output DWT coefficient index. The fourth column shows

46 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 64, NO. 1, FEBRUARY 2018

TABLE I
PERIODIC OPERATIONS IN THREE-LEVEL DWT

the DWT decomposition level and the index in each level. The
fifth to eighth columns also show the same as the first to the
fourth columns, where the time starts from the 18th cycle in
the fifth column. As the decomposition level is three, the out-
put is repeated with a period of eight. For example, H1(0) is
generated at cycles 1, 9, 17, and 25. The darkness level in
Table I indicates the output in the same period. Owing to
the repeating property, the same hardware generating the first
eight coefficients is used repeatedly to generate the remain-
ing sequence. This implies that the hardware cost does not
increase, even though the length of the input image sequence
does. Note that the repetition period depends on the DWT
level. For four-level DWT, the repetition period is 16 (= 24). In
general, n-level DWT generates an output sequence repeating
with a period of 2n.

B. Set-Partitioning in Hierarchical Trees

SPIHT is a fast and effective compression algorithm used
for encoding DWT coefficients [10]. It processes in a bit-plane
by bit-plane manner, from the most significant bit-plane down
to the least significant. SPIHT performs a significance test
on a set of wavelet coefficients organized in a tree structure.
For a given set of coefficients T, the significance test Sn(·),
which represents the result of the significance test for the nth
bit-plane, is given as follows:

Sn(T) =
{

1, max(c(i))∈T{|c(i)|} ≥ 2n

0, otherwise
(3)

where c(i) is the ith coefficient in T and 2n is the threshold of
the nth bit-plane (i.e., the significance of the bit-plane). The
significance test classifies the set as a significant set, in which
the maximum coefficient of the set is larger than the signif-
icance of the bit-plane. Otherwise, the set is classified as an
insignificant set, and coded as a single bit “0.” The signifi-
cant set is divided into subsets, and the significance of each
subset is tested again. When the subset has a single coeffi-
cient, the subset becomes a significant pixel or an insignificant
pixel depending on the result of a significance test. The coding

(a)

(b)

Fig. 2. Binary tree structure of DWT coefficients. (a) Decomposition level 3
and (b) decomposition level 2.

operation is terminated when all coefficients are coded or the
encoded bit-stream length reaches the TBL.

SPIHT performs the significance test on the binary tree of
coefficients. In this binary tree, a coefficient c(i) has two off-
spring, which are the two coefficients c(2i) and c(2i + 1). In
turn, c(2i) has two offspring c(4i) and c(4i + 1). Therefore,
c(4i), c(4i + 1), c(4i + 2), and c(4i + 3) are also descen-
dants of the coefficient c(i). Fig. 2 shows the binary tree
structure used in SPIHT for a block size of 1 × 16. Note
that the input of SPIHT consists of DWT coefficients, and
the tree structure depends on the DWT decomposition level.
Fig. 2(a) and (b) shows the structures for levels three and two,
respectively. In Fig. 2(a), the coefficient c(0) corresponds to
L3(0), which is the 0th low-band coefficient of level 3. The
coefficient c(1) corresponds to L3(0), which is the first low-
band coefficient of level three. The coefficient c(2) corresponds
to H3(0), which is the 0th high-pass band coefficient of level
three. The correspondences of the other coefficients are also
presented in Fig. 2(a). The half of the coefficients in the low-
pass band with the highest indexes form the root(s) of all the
binary trees. For example, in Fig. 2(a), L3(1) is the only root
of all the binary trees, which are indicated by the arrows in
the figure. In Fig. 2(b), L2(2) and L2(3) [corresponding to c(2)
and c(3), respectively] form the roots of the two binary trees.

The no-list SPIHT (NLS) algorithm shown in Fig. 3 is
a modified version of SPIHT, in order to ease the hardware
implementation by using a marker for each DWT coefficient
to store its encoding state [12]. In NLS, every DWT coef-
ficient is classified as one of three states, list of significant
sets (LIS), list of insignificant pixels (LIP), or list of signifi-
cant pixels (LSP). A coefficient is in the LIS state if the set
consisting of itself and its descendent coefficients is insignif-
icant. If a coefficient is not classified as an LIS state, then it
is classified as either an LIP or LSP state. A coefficient is in
the LIP state if it is insignificant. On the other hand, a coef-
ficient is in the LSP state if it is significant. NLS processes
in a bit-plane by bit-plane manner, and the algorithm shown
in Fig. 3 presents the operation for a single bit-plane. In this
algorithm, mark[i], magn[i], and sign[i] represent the state,
magnitude, and sign of the ith coefficient c(i), respectively.

NLS consists of three passes: 1) the refinement pass (RP);
2) insignificant pixel pass (IPP); and 3) insignificant set

NGUYEN et al.: LOW-COST HARDWARE DESIGN OF 1-D SPIHT ALGORITHM FOR VIDEO DISPLAY SYSTEMS 47

Fig. 3. 1-D NLS algorithm.

pass (ISP). RP processes the coefficients in the LSP state (lines
1–3 in Fig. 3). The magnitude bit of the current bit-plane for
the coefficient is generated for the bit-stream (line 3). IPP pro-
cesses coefficients in the LIP state (lines 4–9). The first step
in this pass generates the magnitude bit (line 6), and then tests
its significance (line 7). If it is significant, then the sign bit
is generated (line 8) and the state is changed to LSP (line 9).
Lines 14–23 describe the operation of ISP, which processes the
coefficients in the LIS state. First, this tests the significance
of the set that consists of the descendent coefficients of the
current coefficient. Let S(i) be defined as the significance of
the set consisting of the coefficient c(i) and all its descendant
coefficients. Then, the first step of ISP tests S(i). This value is
“1” if the set is significant (i.e., the set includes at least one
significant coefficient). On the contrary, this set is insignifi-
cant if all coefficients in the set are insignificant. If this set
is insignificant, then only the value of S(i) is generated, and
the operation of ISP ends. If this set is significant, then its
two offspring coefficients are marked as LIS (line 17). The
next steps generate the magnitude bit and the sign bit, and
change the status depending on the significance of the coef-
ficient (lines 18–23). Note that the effective compression of
SPIHT is achieved by ISP, which generates only a single bit
for all the descendent coefficients if the significant test returns
0.

C. VLSI Design of SPIHT Algorithm and Its Challenges

Fig. 4 illustrates the conventional design for an embed-
ded codec engine that uses DWT and SPIHT [11] with two
main modifications. First, its input is under a YUV422 format
instead of the general pixel in [11]. At every cycle, four pix-
els are continuously processed in the raster-scan order by the
system. Therefore, an input buffer is not required. Second, the

Fig. 4. General system architecture for an embedded codec engine.

size of the buffers between DWT and SPIHT is determined
by parameter L, which refers to the size of a coding unit.
Similar to [11], dual buffers are used to avoid bubble cycles.
In addition, each buffer has a doubled size to simultaneously
handle the block with luminance (Y) and chrominance (UV)
components. The design challenge lies in how to define the
value L when considering the tradeoff between the coding
efficiency and hardware cost. The block size L is set to
64 in [19] and [20], which achieves a high coding efficiency,
but suffers from a high hardware cost. However, this paper
addresses the hardware cost problem in designing a small cod-
ing unit (e.g., L = 16). In other words, the coding efficiency
gap among different coding block units is addressed. Note that
in [11] this gap is not clearly shown, as the small coding unit
is relatively large, having 64 (= 8 × 8) coefficients, while the
CR is two or four.

III. PROPOSED PARTITIONED SPIHT ALGORITHM

This section presents the partitioned SPIHT algorithm to
reduce the buffer size and the corresponding scheduling.

A. Partitioned SPIHT Algorithm

Fig. 5 shows the proposed block-based NLS algorithm. The
input sample is partitioned into sub-blocks of size b, which
are processed independently. The operation is identical for all
sub-blocks (lines 2–26), so that this is simply repeated as the
outer-most loop (line 1). The partitioned SPIHT method in
this paper can be considered as a generalized version of the
four set-partitioning trees in [11]. The sub-block size is deter-
mined by the DWT decomposition level, so that sub-blocks
have an identical format. For a given DWT decomposition
level of n, the target sub-block size of the proposed hardware
implementation is 1 × 2n, because the hardware resources can
be efficiently utilized with this size (see the detailed expla-
nation in Section III-B). The proposed partitioned algorithm
is also different from the previous block-based pass-parallel
SPIHT [15], in which each bit-plane is partitioned into smaller
coding units. In particular, an 8 × 8 bit-plane is divided into
four 4 × 4 bit-planes, and processed sequentially.

B. Modified Data Structure and Buffer Reduction

This section proposes a method to reduce the buffer size.
The first buffer is used for storing the marker in the SPIHT
module in Fig. 4. One way to reduce the buffer size is to
reuse the buffer of one sub-block for the other sub-blocks. The

48 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 64, NO. 1, FEBRUARY 2018

Fig. 5. Proposed portioned-SPIHT algorithm.

shared use of a single marker for every sub-block requires that
all the coding information is reset after each sub-block coding
is completed. This implies that each sub-block compres-
sion is performed independently. This independent sub-block
compression requires the reorganization of the data struc-
ture. Fig. 6(a) shows the conventional linear data structure
of the coefficients generated by DWT. This figure presents
the example of 1 × 32 coefficients with a three-level filter-
ing operation. The 1 × 32 coefficients are partitioned into
four sub-blocks, each of size 1 × 8. The first coefficient
c(0) is L3

0(0) which is generated from the first eight input
samples {x(0), x(1), . . . , x(7)} in addition to x(8), which is
one of the second eight samples. The subscript 0 indicates
that a coefficient is generated for the first eight samples, and
the superscript 3 represents the DWT decomposition level of
three. The second coefficient c(1) is L3

1(0), which is gener-
ated from the second eight input samples {x(8), x(9), . . . , x(5)}
as well as x(6) and x(7) from the first eight samples and
x(16) from the third eight samples. If coefficients are indexed
as in Table I, then L3

1(0) is c(8). The third and fourth
coefficients c(2) and c(3) are L3

2(0) and L3
3(0), respectively,

which are generated mostly from the third and fourth sets
of eight input samples, respectively. The fifth coefficient c(4)
is H3

0(0), from the first eight samples {x(0), x(1), . . . , x(7)}.
The six, seventh, and eighth coefficients c(5), c(6), and c(7)
are H3

1(0), H3
2(0), and H3

3(0), from the second, third, and
fourth sets of eight input samples, respectively. As a result,
the first sub-block corresponds to the DWT coefficients

(a)

(b)

Fig. 6. Partitioning of a coding block into four sub-blocks. (a) Conventional
partitioning [19], [20] and (b) proposed partitioning.

{L3
0(0), L3

1(0), L3
2(0), L3

3(0), H3
0(0), H3

1(0), H3
2(0), H3

3(0)}, and
the second sub-block corresponds to the DWT coefficients
{H2

0(0), H2
0(1), H2

1(0), H2
1(1), H2

2(0), H2
2(1), H2

3(0), H2
3(1)}.

Note that the marker status of the second sub-block depends
on the coding result of the first sub-block. For example, the
first entry in the second sub-block H2

0(0) requires the informa-
tion generated as a result of H3

0(0) in the first block. Therefore,
the dependence between the first and second sub-blocks makes
it impossible to reset the marker status between the coding
operations of the first and second sub-blocks. Similarly, the
dependence between the second and third sub-blocks prohibits
the marker status from being reset.

The proposed sub-block structure can also reduce the buffer
size, to store the results of DWT coefficients in the coefficient-
to-bit-plane (C2B) module in addition to the buffer in the
SPIHT module. This is because the DWT coefficients are gen-
erated in a periodical manner, as shown in Table I, which
in fact follows the same order as the proposed sub-block
structure. Therefore, it is not necessary to store all the DWT
operations. Instead, only the first set of DWT coefficients
is stored and forwarded to the SPIHT module, because this
first set corresponds to the first sub-block for SPIHT oper-
ation. These DWT and SPIHT operations are processed in
a pipelined manner, and the storage space in the C2B mod-
ule can be significantly reduced. To this end, two buffers, each
storing a sub-block, are required to store and forward the DWT
results to SPIHT in a ping-pong manner. One buffer is neces-
sary to store the DWT coefficients used as the input to SPIHT,
while the other buffer is used to store the output of DWT
operations for the next pipeline stage.

NGUYEN et al.: LOW-COST HARDWARE DESIGN OF 1-D SPIHT ALGORITHM FOR VIDEO DISPLAY SYSTEMS 49

(a)

(b)

Fig. 7. Pipelined execution of the partitioned sub-blocks. (a) Conventional
partitioning and (b) proposed partitioning.

Fig. 7 presents an example when the block size is 1 × 32,
which is partitioned into four sub-blocks of size 1 × 8.
Fig. 7(a) shows the conventional buffer, which stores the
entire 1 × 32 blocks in the C2B module. For a pipelined
execution in a ping-pong manner, two blocks need to be
stored in the buffer with a size of 64 coefficients. The
marker buffer also stores all the information for the entire
1 × 32 block. In Fig. 7(b), the space is reduced using the
proposed scheme. When DWT transforms P1, eight output
coefficients are stored in the first part in the memory block.
Note that the coefficients in P1 are L3(0), H3(0), H2(0),
H2(1), H1(0), H1(1), H1(2), and H1(3). When the second
part P2 is transformed in DWT, the next eight output coef-
ficients are stored in the second part of the memory in the
C2B module. At the same time, C2B sends the first sub-block
bit-plane by bit-plane to the SPIHT block. When the third
part P3 is transformed in DWT, the first part P1 in the mem-
ory block is no longer used. The coefficients of P3 are saved
in the first part of the memory. Concurrently, C2B transfers
the bit-planes of the second memory to SPIHT. This pro-
cess is repeated until DWT transforms the last sub-block.
As a result, the memory size in the C2B module is sig-
nificantly reduced to store only two sub-blocks, which each
consist of 16 coefficients. Thus, the buffer size is reduced to
only a quarter of the original size, achieving a 75% buffer
reduction.

It should be noted that the DWT module in our design is
similar to that in [19] and [20]. In particular, the block size
for DWT is 1 × 64 instead of 1 × 16. Thanks to the DWT
properties, the hardware cost of DWT module is relatively
small as the DWT level are still three. In addition, the adoption
efficiently handles the block artifact in the boundary pixels,
thus, it significantly reduces the coding degradation due to the
sub-block coding.

(a) (b)

Fig. 8. 1-D DWT analysis of the second 1 × 8 block. (a) Conventional
operation and (b) proposed operation with boundary extension.

IV. CODING EFFICIENCY IMPROVEMENT FOR

INDIVIDUAL SUB-BLOCK CODING

A. Boundary Handling

The proposed sub-block partitioning method differs from the
conventional DWT+SPIHT method for a small block size. For
example, conventional DWT+SPIHT can be performed with
a 1 × 8 block as the basic processing block. Recall that the
proposed partitioned algorithm uses 1×8 as the sub-block size,
while the basic processing block size is 1 × 32. There exists
an important difference between the conventional algorithm
for a 1 × 8 block and the proposed algorithm for a 1 × 8 sub-
block partitioned from a 1 × 32 block. Fig. 8 illustrates this
difference, where the DWT operation of the second 1×8 block
(x(8), . . . , x(15)) is presented. Fig. 8(a) shows the operations
for the conventional approach, whereas the operation for the
proposed algorithm is shown in Fig. 8(b). Comparing with
Fig. 8(a), the output is the same, but the input is slightly
different. In Fig. 8(b), x(6), x(7), and x(16) are used for the
operation, but they are not in Fig. 8(a). This indicates that
the conventional approach for a 1 × 8 block does not make
use of the image characteristics on the boundary pixels, which
degrades the compression efficiency. The sub-block compres-
sion for P2 uses 11 input samples from x(6) to x(16) for the
generation of DWT coefficients of the 1×8 sub-block, whereas
the conventional 1 × 8 operations use only eight input sam-
ples from x(8) to x(15). Thus, this misses three out of 11 input
samples, causing a substantial degradation of the compression
efficiency (see the detailed numerical results in Section V-B).

B. Adjustment of the Target Bit Length for Individual
Sub-Blocks

Assume that a block is partitioned into four sub-blocks
P1, P2, P3, and P4. Fig. 9(a) shows an example in which
the four sub-blocks, P1, P2, P3, and P4 may have different
lengths for the generated bit-stream when they are encoded in

50 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 64, NO. 1, FEBRUARY 2018

(a) (b)

(c) (d)

Fig. 9. Adjustment of the TBLs of sub-blocks. (a) Generated bit-stream
length for lossless compression. (b) Truncated bit-stream to meet the identi-
cal TBL. (c) Reallocation of the truncated bit-stream to the other sub-block.
(d) Adjusted TBL for reallocation.

a lossless manner. If the four sub-blocks are encoded inde-
pendently, then a quarter of the TBL is assigned to each
sub-block. Fig. 9(b) shows an example in which the sub-blocks
P1 and P4 are truncated by the given TBL. Meanwhile, the
sub-blocks P2 and P3 have wasted spaces. If these wasted
spaces are used to store the truncated bit-streams of P1 and
P4, then the data loss in P1 and P4 can be avoided [see
Fig. 9(c)]. This reallocation of bit-stream storage is imple-
mented if the TBL of each sub-block is adjusted such that
a relatively large TBL is assigned to a complex sub-block
(P1 or P4 in this example), whereas a small TBL is assigned to
a simple sub-block (P2 or P3). Fig. 9(d) illustrates an adjust-
ment of the sub-block TBL. Through this TBL adjustment,
a wasted space is reduced, and consequently the coding effi-
ciency can be improved. The challenge in the TBL adjustment
lies in the fact that an appropriate TBL needs to be selected
for each sub-block. Let TBL1, TBL2, TBL3, and TBL4 be the
TBLs assigned to the sub-blocks, P1, P2, P3, and P4, respec-
tively. The remainder of this section discusses how to select
appropriate values for TBL1, TBL2, TBL3, and TBL4.

An SPIHT-based algorithm has an advantage in the estima-
tion of the loss of image quality on the fly, while the algorithm
is running. Let BL1, BL2, BL3, and BL4 be the bit-lengths given
by the sub-blocks P1, P2, P3, and P4, respectively. Let �i be
the adjusted part for the sub-block Pi, with i ∈ {1, 2, 3, 4}. In
this paper, �1,�2,�3, and �4 are simply defined as follows:

�1 = −�3 = BL1 − BL3

2
(4)

�2 = −�4 = BL2 − BL4

2
. (5)

Note that the adjusted length must be encoded as a header
to be valid to the decoder. The length is represented by four

bits consisting of one sign bit and three value bits. For exam-
ple, (0)100 is translated to an adjusted length � = +16(=
(0)10000).

V. EXPERIMENTAL RESULTS

This section evaluates the compression efficiency of the
proposed partitioned SPIHT algorithm and the cost of the
hardware that implements the proposed algorithm.

A. VLSI Implementations

The proposed algorithm is implemented in hardware with
Verilog HDL programming, which is synthesized with a
0.13-um library for ASIC fabrication. Table II shows the
hardware cost for three implementations: the straight-forward
design of NLS in Fig. 3, with the block size L = 64, and two
proposed partitioned SPIHT methods with the sub-block size
L = 16, with and without bit-allocation. The proposed method
using boundary handling and bit-allocation schemes is marked
with O, while the other (unused) is marked with ×. The third
column shows the hardware costs for the NLS encoder and
decoder, respectively, shown in Fig. 3. In this implementation,
the block size is determined as 1 × 64, and all the hardware
modules are designed to process a 1 × 64 block as the basic
processing unit. Note that the input image is in the color YUV-
422 format, so that each block has a total of 128 coefficients,
with 64 luminance pixels for Y and 32 chrominance pixels
each for U and V. In the proposed module with L = 64, the
gate count of the DWT unit (6.1% for the encoder and 9.9%
for the decoder) is much smaller than that of the SPIHT unit.
Therefore, the block size reduction for the SPIHT unit is much
more efficient. The upper parts of the fourth and fifth columns
show the gate counts of the encoder without two additional
schemes and those with two additional schemes, respectively.
Compared with the hardware cost of the nonpartitioned imple-
mentation (i.e., L = 64) shown in the third column, the
proposed partitioned SPIHT encoder without the boundary
handling and the TBL adjustment achieves 62.73% of total
hardware cost reduction. As explained, for the boundary han-
dling and the TBL adjustment, extra hardware resources are
necessary. As a result, the total hardware cost of the proposed
partitioned SPIHT encoder with two additional schemes is
22.4K gates, which still achieves a large reduction of 58.67%.
The lower parts of the fourth and fifth columns show the
hardware costs of the proposed decoder designs without two
additional schemes and those with two additional schemes,
respectively. Compared with the hardware cost in the third
column, the gate count of the proposed partitioned SPIHT
decoder with two additional schemes is 25.9K gates, which
achieves a large reduction of 52.48%.

Table III compares the hardware resources of the proposed
implementation with those of previous works in [19] and [20].
Clearly, the proposed implementation consumes significantly
less hardware costs and memory bits. The cost reduction can
be explained as follows. As mentioned in the previous section,
the gate count of the DWT unit is much smaller than that of
the SPIHT unit and thus, this paper focuses on the block size

NGUYEN et al.: LOW-COST HARDWARE DESIGN OF 1-D SPIHT ALGORITHM FOR VIDEO DISPLAY SYSTEMS 51

TABLE II
GATE COUNTS OF THE PROPOSED HARDWARE

IMPLEMENTATIONS (ASIC)

TABLE III
GATE COUNTS COMPARISON OF HARDWARE IMPLEMENTATIONS (ASIC)

reduction for the SPIHT unit and proposes the generic parti-
tioned SPIHT algorithm. It should be noted that the coding
block unit for the proposed partitioned SPIHT is only 1 × 16;
while that of [19] and [20] is 1 × 64. The proposed algorithm
compresses all the bit-planes in a sub-block before it moves
on to the next sub-block, so that it is not necessary to store all
the intermediate results for one sub-block after the sub-block
coding is completed. In this manner, the buffer space for the
intermediate results is shared by multiple sub-blocks, and the
total gate count and buffer size are significantly reduced. To
this end, compared to [19] and [20], the proposed implemen-
tation achieves a memory bit reduction of 80.7% and 75%,
respectively, and a total hardware cost reduction of 51.94% and
59.34%, respectively. These results indicate that the proposed
design is very suitable for mobile devices.

B. Compression Efficiency

To evaluate the objective image quality, the peak signal-to-
noise ratio (PSNR) is measured for the 24 test images used as
test images [23]. The PSNR is calculated by

PSNR = 10 × log10

(
2552

(MSER + MSEG + MSEB)/3

)
(6)

where MSER, MSEG, and MSEB represent the mean squared
errors of the red, green, and blue components, respectively.
Similar to [19] and [20], the images are transformed into
Y, Cb, and Cr components, and then subsampled in the
4:2:2 format.

Table IV reports the average PSNR results of the pro-
posed design, the previous 1-D DWT+SPIHT designs
in [19] and [20]. Compared to the previous designs, the pro-
posed design has achieved the significant hardware reduction
by reducing the coding block unit of the proposed SPIHT from

TABLE IV
QUALITY COMPARISON OF THE IMAGES WITH SPIHT VARIATIONS

1 × 64 to 1 × 16, but it accompanies the PSNR degradation
inevitably. The second row of Table IV shows the PSNR of
the baseline high-throughput 1-D SPIHT [20], which achieves
43.41 dB with the same 24 test images [23]. As [20] includes
additional schemes as dummy bit reuse, half-block process-
ing, and relocation of sorting bits, [20] can achieve the PSNR
of 44.37 dB on average as shown in third row of Table IV.
In [19], the coding efficiency can be considerably improved
as the DWT low coefficients are further encoded by a loss-
less compression algorithm. However, as described above, the
PSNR enhancement in [19] and [20] suffers from very huge
hardware costs and consequently, these are not suitable for
mobile devices. In the sixth row of Table IV, the proposed
NLS with L = 16 shows the PSNR degradation of 1.73 dB
compared to the baseline high-throughput 1-D SPIHT [20].
The previous study in [24] shows that when the processing
unit of the baseline high-throughput 1-D SPIHT [20] changes
from 1 × 64 to 1 × 16, the average performance degrades by
3.15 dB because the processing units of DWT and SPIHT are
all reduced to 1×16. However, the proposed design effectively
reduces the hardware costs and memory bits with relatively
small PSNR degradation of 1.73 dB by utilizing 1 × 64 DWT
units. Furthermore, the proposed boundary handling increases
the average PSNR from 41.68 dB to 42.49 dB (i.e., +0.81 dB);
while the TBL adjustment further increases the PSNRs from
42.49 dB to 42.79 dB (i.e., +0.3 dB). As a result, thanks to
the boundary handling and the TBL adjustment, the proposed
design improves the coding efficiency by 1.11 dB, resulting
in the PSNR degradation of 0.62 dB compared to the baseline
high-throughput 1-D SPIHT [20]. Although the PSNR of the
proposed design is still lower than that of the previous works,
the proposed design alleviates the considerable performance
degradation and significantly reduces the hardware resources.

VI. CONCLUSION

As various commercial video display systems, including
high-resolution televisions and mobile devices, have become
increasingly popular, frame memory compression is becoming
more important for reducing memory storage and bandwidth
effectively. There are two main contributions in this paper for
supporting efficient compression with 1-D DWT and SPIHT
schemes which are widely used for frame memory compres-
sion. First, the proposed partitioned algorithm is designed
to handle various sub-blocks, depending on the decomposi-
tion level of DWT. If the decomposition level is n, then any

52 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 64, NO. 1, FEBRUARY 2018

multiple of 1 × 2n can be used as the sub-block size. The
proposed algorithm compresses all the bit-planes in a sub-
block before it moves on to the next sub-block, so that it
is not necessary to store all the intermediate results for one
sub-block after the sub-block coding is completed. In this man-
ner, the buffer space for the intermediate results is shared by
multiple sub-blocks, and the total buffer size is significantly
reduced. The required gate count is 48.3K, achieving up to
59.34% hardware cost reduction compared with the previous
1-D DWT and SPIHT design. Second, to reduce the degrada-
tion of the compression efficiency by the partitioned coding
scheme, a boundary handler of DWT coefficients is utilized,
and the TBL of each sub-block is adjusted according to its pre-
dicted complexity. In summary, the proposed approach makes
a good tradeoff between the cost and the coding efficiency,
which makes it applicable for low-cost commercial devices
such as smartphones.

REFERENCES

[1] H.-C. Kuo and Y.-L. Lin, “A hybrid algorithm for effective lossless
compression of video display frames,” IEEE Trans. Multimedia, vol. 14,
no. 3, pp. 500–509, Jun. 2012.

[2] J. Someya, N. Okuda, and H. Sugiura, “The suppression of noise on
a dithering image in LCD overdrive,” IEEE Trans. Consum. Electron.,
vol. 52, no. 4, pp. 1325–1332, Nov. 2006.

[3] T.-H. Tsai and Y.-H. Lee, “A 6.4 Gbit/s embedded compression codec
for memory-efficient applications on advanced-HD specification,” IEEE
Trans. Circuits Syst. Video Technol., vol. 20, no. 10, pp. 1277–1291,
Oct. 2010.

[4] Y. Lee, C.-E. Rhee, and H.-J. Lee, “A new frame recompres-
sion algorithm integrated with H.264 video compression,” in Proc.
IEEE Int. Symp. Circuits Syst., New Orleans, LA, USA, May 2007,
pp. 1621–1624.

[5] Y. Jin, Y. Lee, and H.-J. Lee, “A new frame memory compression algo-
rithm with DPCM and VLC in a 4×4 block,” EURASIP J. Adv. Signal
Process., vol. 2009, no. 629285, p. 18, Dec. 2009.

[6] J.-W. Han, M.-C. Hwang, S.-G. Kim, T.-H. You, and S.-J. Ko, “Vector
quantizer based block truncation coding for color image compression
in LCD overdrive,” IEEE Trans. Consum. Electron., vol. 54, no. 4,
pp. 1839–1845, Nov. 2008.

[7] D. Marpe, T. Wiegand, and G. J. Sullivan, “The H.264/MPEG4 advanced
video coding standard and its applications,” IEEE Commun. Mag.,
vol. 44, no. 8, pp. 134–143, Aug. 2006.

[8] D. Woo, C.-E. Rhee, and H.-J. Lee, “A cache-aware motion estimation
organization for a hardware-based H.264 encoder,” IEEE Trans. Consum.
Electron., vol. 60, no. 1, pp. 83–91, Feb. 2014.

[9] K. Sayood, Introduction to Data Compression, 3rd ed. New York, NY,
USA: Morgan Kaufmann, 2005.

[10] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec
based on set partitioning in hierarchical trees,” IEEE Trans. Circuits
Syst. Video Technol., vol. 6, no. 3, pp. 243–250, Jun. 1996.

[11] C.-C. Cheng, P.-C. Tseng, and L.-G. Chen, “Multimode embedded com-
pression codec engine for power-aware video coding system,” IEEE
Trans. Circuits Syst. Video Technol., vol. 19, no. 2, pp. 141–150,
Feb. 2009.

[12] F. W. Wheeler and W. A. Pearlman, “SPIHT image compression without
lists,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., Istanbul,
Turkey, Jun. 2000, pp. 2047–2050.

[13] P. Corsonello, S. Perri, G. Staino, M. Lanuzza, and G. Cocorullo,
“Low bit rate image compression core for onboard space applications,”
IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 1, pp. 114–128,
Jan. 2006.

[14] T. W. Fry and S. A. Hauck, “SPIHT image compression on FPGAs,”
IEEE Trans. Circuits Syst. Video Technol., vol. 15, no. 9, pp. 1138–1147,
Sep. 2005.

[15] Y. Jin and H.-J. Lee, “A block-based pass-parallel SPIHT algorithm,”
IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 7, pp. 1064–1075,
Jul. 2012.

[16] Z. Lu, D. Y. Kim, and W. A. Pearlman, “Wavelet compression of ECG
signals by the set partitioning in hierarchical trees algorithm,” IEEE
Trans. Biomed. Eng., vol. 47, no. 7, pp. 849–856, Jul. 2000.

[17] S. Ktata, K. Ouni, and N. Ellouze, “A novel compression algorithm for
electrocardiogram signals based on wavelet transform and SPIHT,” Int.
J. Signal Process., vol. 5, no. 4, pp. 253–258, Sep. 2009.

[18] Z.-H. Zhang and J. Zhang, “Unsymmetrical SPIHT codec and 1D SPIHT
codec,” in Proc. Int. Conf. Elect. Control Eng., Wuhan, China, Jun. 2010,
pp. 2498–2501.

[19] S. Kim, D. Lee, H. Kim, N. X. Truong, and J. S. Kim, “An enhanced one-
dimensional SPIHT algorithm and its implementation for TV systems,”
Displays, vol. 40, pp. 68–77, Dec. 2015.

[20] S. Kim, D. Lee, J.-S. Kim, and H.-J. Lee, “A high-throughput hard-
ware design of a one-dimensional SPIHT algorithm,” IEEE Trans.
Multimedia, vol. 18, no. 3, pp. 392–404, Mar. 2016.

[21] D. Le Gall and A. Tabatabai, “Sub-band coding of digital images using
symmetric short kernel filters and arithmetic coding techniques,” in Proc.
IEEE Int. Conf. Acoust. Speech Signal Process., New York, NY, USA,
Apr. 1988, pp. 761–764.

[22] P.-Y. Chen, “VLSI implementation for one-dimensional multilevel
lifting-based wavelet transform,” IEEE Trans. Comput., vol. 53, no. 4,
pp. 386–398, Apr. 2004.

[23] Kodak Lossless True Color Image Suite. Accessed: Jul. 2, 2017. [Online].
Available: http://r0k.us/graphics/kodak/

[24] H. Kim and H.-J. Lee, “A low-power surveillance video coding system
with early background subtraction and adaptive frame memory com-
pression,” IEEE Trans. Consum. Electron., vol. 63, no. 4, pp. 359–367,
Nov. 2017.

Xuan Truong Nguyen received the B.S. degree in
electrical engineering from the Hanoi University of
Science and Technology, Hanoi, Vietnam, in 2011
and the M.S. degree in electrical engineering and
computer science from Seoul National University,
Seoul, South Korea, in 2015, where he is currently
pursuing the Ph.D. degree in electrical engineering
and computer science.

His current research interests include algorithm
and very large scale integration design for computer
vision.

Hyuk-Jae Lee (M’03) received the B.S. and
M.S. degrees in electronics engineering from Seoul
National University, Seoul, South Korea, in 1987 and
1989, respectively, and the Ph.D. degree in electrical
and computer engineering from Purdue University,
West Lafayette, IN, USA, in 1996.

From 1998 to 2001, he was with the Server
and Workstation Chipset Division, Intel Corporation,
Hillsboro, OR, USA, as a Senior Component Design
Engineer. From 1996 to 1998, he was a Faculty
Member with the Department of Computer Science,

Louisiana Tech University, Ruston, LA, USA. In 2001, he joined the School
of Electrical Engineering and Computer Science, Seoul National University,
where he is currently a Professor. He is the Founder of Mamurian Design, Inc.,
Seoul, a fabless SoC design house for multimedia applications. His current
research interests include computer architecture and SoC design for multime-
dia applications.

Dr. Lee currently serves as an Associate Editor of the IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS for Video Technology.

Hyun Kim (M’16) received the B.S., M.S., and
Ph.D. degrees in electrical engineering and com-
puter science from Seoul National University, Seoul,
South Korea, in 2009, 2011 and 2015, respectively.

Since 2015, he has been with the BK21 Creative
Research Engineer Development for IT, Seoul
National University, where he is currently an
Assistant Professor. His current research interests
include low-power algorithm and SoC design for
video coding such as HEVC and H.264/AVC and
configurable video coding for real time systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

